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Abstract. Hilbert spaces of bounded one-dimensional nonlinear oscillators are studied. It is
shown that the eigenvalue structure of all such oscillators have the same general form. They depend
only on the ground state energy of the system and a single functionλ(H)of the Hamiltonian operator
H . It is also found that the Hilbert space of the nonlinear oscillator is unitarily inequivalent to the
Hilbert space of the simple harmonic oscillator, providing an explicit example of Haag’s theorem.
A number operator for the nonlinear oscillator is constructed and the general form of the partition
function and average energy of a nonlinear oscillator in contact with a heat bath is determined.
Connection with the WKB result in the semiclassical limit is made. The analysis is then applied to
the case of the x4 anharmonic oscillator as an explicit example.

1. Introduction

In this paper we study the general structure of the energy eigenvalues for one-dimensional
nonlinear oscillators. To be specific, we are interested in Hamiltonians which have the form,

H = (a†a + 1
2I) + V (a,a†) (1)

where V (a,a†) is the interaction Hamiltonian and is a function of a and a†, the creation and
annihilation operators for the simple harmonic oscillator (SHO), and I is the identity operator.
(We have set the SHO energy scale to ‘1’.) We shall restrict ourselves to bounding potentials
for which V → ∞ when |x| → ∞. When V is a polynomial in a and a† consisting of terms
(a†)ras , the degree l of V is the maximum value of l = r + s for the polynomial. As is well
known, when l � 2 the Hamiltonian is easily diagonalizable by either shifting a by a constant
(for l = 1) or by a Bogoluibov transformation (for l = 2). Nonetheless, the results of these
analyses have had far-reaching applications, such as coherent and squeezed quantum states [1]
in quantum optics, and the theories of superfluidity and superconductivity [2].

When l > 2 the oscillator is nonlinear with the classical example being the anharmonic
oscillator with a x4 or (a + a†)4 interaction potential. This particular nonlinear oscillator has
been extensively studied since the early 1970s ([3–6]; see [7] for a review of the literature),
due mainly to its equivalence to the one-dimensional φ4 quantum field theory. It was hoped
that a detailed study of this simplified system would shed some light on the structure of the φ4

theory in higher dimensions. Research on this oscillator continues today, mainly because it
provides a natural test bed for such approximation schemes as the strong coupling expansion [8],
modified perturbation schemes [9, 10], variational modified perturbation theories [11], lattice
methods [12], etc. More recently, Bender and Bettencourt [13] have provided a deeper
understanding of the system by using multiple-scale perturbation theory to show that the
frequency of oscillation depends on the energy of the state. This was interpreted by them as
an operator form of mass renormalization.
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The main purpose of this paper is not to present a new method of calculating the energy
eigenvalues of nonlinear oscillators, although we shall end up doing so. Rather, it is to study
the general structure of both the Hilbert space and corresponding eigenvalues for oscillators
with arbitrary binding V (a,a†). The approach we shall take most closely follows the analysis
done for the l � 2 oscillators. Namely, we shall construct, in much the same way, operators
ã and ã† from a and a† which diagonalizes the Hamiltonian. We find that unlike the SHO
operators, ã and ã† obey the commutation relation [�a, ã†] = λ(H) where in general λ(H) is
a function of H and is an operator. Its precise form depends on the specific choice of H and is
a constant only when l � 2. The study of any nonlinear oscillator thereby reduces to the study
of operators having this commutation relation along with the determination of λ(H) and the
ground state energy of the system. Because λ is not a constant function in general, we find
that ã and ã† cannot be unitarily equivalent to a and a†. Only in the special case when l � 2
does such a transformation exists. Consequently, the Hilbert space of the nonlinear oscillator
is generally unitarily inequivalent to that of the SHO. This is an explicit example of Haag’s
theorem, first proposed by Haag in 1955 [14] (see also [15]) for quantum field theories. Haag
actually proved a weaker version of the theorem by showing that the unitary transformation
between the non-interacting and interacting quantum field theories via the interaction picture
does not exist. Later, this result was extended by Hall and Wightman [16] (see also [17]) who
showed that based on the Wightman axioms, the expectation values of the product of four or
fewer fields of an interacting theory is unitarily inequivalent to those of the free theory.

There have been other approaches in using algebraic methods to analyse nonlinear
oscillators, of course, such as the action angle or time operator methods (see, for example,
[18–22]). However, both of these methods are generalizations of classical analytical techniques
to quantum mechanical systems. They rely on the existence of phase Φ and time T operators
which are canonical to the SHO number and Hamiltonian operators: [N ,Φ] = I, [H,T ] = I.
Because of the positivity of the spectrum of both N and H for bound systems, such operators do
not exist in the usual quantum mechanical system [23] (see, however, [24–26] for the existence
of such operators in extended quantum mechanical systems). In this sense these methods of
solution are ‘formal’. The approach we have taken in this paper does not suffer from these
problems. It is not a generalization of classical techniques but is instead a generalization of the
Bogoluibov transformation and is inherently quantum mechanical in nature. Classical solution
techniques are used only in the semiclassical limit where they are expected to be valid.

The rest of this paper is organized as follows. In section 2 the general Hilbert space and
energy eigenvalue structure of nonlinear oscillators are analysed. It is found that they both
depend on a function λ(H) of the Hamiltonian. A number operator is constructed and the
Heisenberg equations of motion are solved. The utility of this analysis is shown in section 3
where it is applied to thermal or KMS states and general statements on the structure of the
quantum statistical mechanics of nonlinear oscillators will be made. This also serves as an
independent check of our methodology and results. Indeed, it is shown that both the partition
function Z and the average energy 〈H〉T for nonlinear oscillators are similar in form to those
of the SHO. In section 4 a method of explicitly constructing λ, ã and ã† from H , a and a† is
outlined and in section 5 a connection between this method and the semiclassical WKB result
is shown. It is thereby demonstrated that in the semiclassical limit λ, ã and ã† exist. We then
apply this construction to the x4 potential in section 6 and reproduce the usual perturbative
result to second order as well as the WKB result in the semiclassical limit. This thereby
provides an explicit example of the appropriateness of this approach. Concluding remarks are
given in section 7.

A note first on notation and convention: operators shall be denoted by boldfaced letters and
we are interested in nonlinear mappings of these operators. In particular, we are interested in
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mappings of Hermitian operators K such as f (K), by which we mean the following. Consider
a function defined on the real line R which is expandable in the series

f (K) =
∞∑
n=0

fnK
n (2)

where K is a real number. If the radius of convergence of this series contains the spectrum of
K, then f (K) is well defined and taken to be

f (K) ≡
∞∑
n=0

fnK
n. (3)

When we write f (K) it is understood that f (K) is an operator while when we write f (K)
we are considering it as a c-number function only. Operationally, f (K) can be obtained from
f (K) by the replacement K → K. If we are referring to the functional form of the function
we shall denote it by f only.

2. General structure

We construct eigenstates of nonlinear oscillators by considering nonlinear mappings of a and
a†. In particular, given a Hamiltonian H constructed from a, and a†, we seek solutions of the
operator equation

[ã,H] = λ(H)ã (4)

where ã is understood to be a function of a and a†. This is an eigenvalue equation with ã being
the ‘eigenoperator’ of H and λ(H) its corresponding ‘left eigenvalue’, although unlike the
standard eigenvalue equation λ(H) is a function of H and the ordering in (4) is important†.
Equation (4) does not determine ã uniquely since if ã satisfies (4), then so does g(H)ã and
ãg(H) where g is any function of H . A normalization for ã is needed, which we choose to
be

H = ã†ã + egI (5)

since it diagonalizes the Hamiltonian explicitly. eg is the ground state energy of the system
which also needs to be determined. (This is very similar to the way one determines the
Bogoluibov transformation which diagonalizes the l = 2 Hamiltonian H = a†a + iε(a2 −
(a†)2)/2, but now λ(H) is a function of H .) Using this normalization equation (5) in
equation (4) we find that

[ã, ã†] = λ(H). (6)

To show that ã and ã† creates and annihilates eigenstates of H , we make use of the
identity,

[ã,Hn] = {(λ(H) + H)n − Hn}ã (7)

obtained using (4). Then for any given functionM(H) which is expandable in a power series,

[ã,M(H)] = {M(λ(H) + H)−M(H)}ã. (8)

With this we see that if ã is an eigenoperator of H with left eigenvalue λ(H), then so is ãn,

[ãn,H] = {λ(H) + λ(λ(H) + H) + · · · + λ(λ(· · · λ(λ(H) + H) · · · + H) + H)}ãn. (9)

† This is in contrast to the operator equation [ã,H] = ãλR(H) for which λR(H) is the ‘right eigenvalue’. In
general, λ = λR. Indeed, while equations analogous to equations (7)–(9) would hold with the right eigenvalue
solutions, equation (5) no longer implies an analogous equation (6) for the right eigenvalue. Moreover, construction
of the Hilbert space would no longer follow the same method as given on page 3812.
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Given equation (9), the Hilbert space Hnl for nonlinear oscillators and their energy
eigenvalues are now easily constructed in much the same way as the SHO Hilbert space
HSHO . To do so, we first note the following. Let |A〉 be an eigenstate of the operator A with
eigenvalue A so that A|A〉 = A|A〉. Next, consider a function χ(x) which is expandable in a
power series for all values of A so that

χ(A) =
∞∑
n=0

χnA
n (10)

is well defined. It is then clear that

χ(A)|A〉 =
∞∑
n=0

χnA
n|A〉 =

∞∑
n=0

χnA
n|A〉 = χ(A)|A〉 (11)

and |A〉 is also an eigenstate of χ(A) with eigenvalue χ(A).
Now consider the operator Ĥ = H − egI = ã†ã. Then, if |φ0〉 is an eigenstate of Ĥ

with eigenvalue φ0,

φ0 = 〈φ0|Ĥ|φ0〉 = |ã|φ0〉|2 � 0 (12)

and all the eigenvalues of Ĥ are non-negative. Next consider the state |φ−1〉 ≡ ã|φ0〉. Then

Ĥ|φ−1〉 = φ0|φ−1〉 − λ(H)|φ−1〉 (13)

or, equivalently, (Ĥ + λ(H))|φ−1〉 = φ0|φ−1〉. From the above, since λ is a function of
Ĥ + egI, |φ−1〉 must also be an eigenstate of Ĥ . We shall label its eigenvalue as φ−1. Then
equation (13) reduces to φ−1 = φ0 − λ(φ−1 + eg). If λ(e) > 0 for all e, we have φ−1 < φ0

(see appendix A).
Similarly, the states |φ−n〉 ≡ ãn|φ0〉 are also eigenstates of Ĥ with eigenvalues φ−n.

Moreover, for λ(e) > 0 they satisfy a sequence of strict inequalities

φ−n < φ−(n−1) < · · · < φ−1 < φ0. (14)

Since φ−n � 0 for all n, this sequence must end. Namely, for some m, φ−m = 0. Then
0 = 〈φ−m|Ĥ|φ−m〉 = |ã|φ−m〉|2 or ã|φ−m〉 = 0. The ground state is then identified as
|�〉 = |φ−m〉 and H|�〉 = eg|�〉, thereby justifies our calling eg the ground state energy†.

Thus, if λ(e) > 0 for all e, a ground state exists and Hnl is spanned by the states

|n〉nl = (ã†)n|�〉nl√
An

(15)

where

An = λ(eg) · (λ(eg) + λ(λ(eg) + eg)) · · · · · (λ(eg) + λ(λ(eg) + eg)

+ · · · + λ(λ(· · · λ(λ(eg) + eg) · · · + eg) + eg)). (16)

They are eigenstates of H with eigenvalues en where

en = en−1 + λ(en−1)

= eg + λ(eg) + λ(λ(eg) + eg) + · · · + λ(λ(· · · λ(λ(eg) + eg) · · · + eg) + eg). (17)

λ thereby determines the splitting between successive energy levels.
If λ is the constant function, then from (17) we see that the energy levels of the oscillator

are equally spaced. As we shall show in section 4, this is only possible for l � 2, which is
well known. When l > 2, λ(H) is a function of H and this equal spacing no longer occurs.

† Aside from requiring that λ be a positive definite function, there are no other positivity requirements for (2) and
(4). In appendix A, this positivity requirement is shown to hold for a wide variety of potentials in the semiclassical
limit. This is in contrast to the commutation relations for the time and phase operators.
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Note, however, that both equation (5) and the commutation relation (6) are invariant
under unitary transformations: ã → U ãU †. As usual, unitary transformations are canonical
transformations which preserve the commutation relation. For the SHO, λ = 1, while for a
nonlinear oscillator λ(H) is a function of H . Since a unitary transformation cannot change
the functional form of λ, ã and a are unitarily inequivalent. Consequently, the Hilbert spaces
Hnl and HSHO are unitarily inequivalent.

It is well known that under certain conditions any two solutions of the canonical
commutation relation [a,a†] = I are connected by a unitary transformation. Our result
does not contradict this. The operators ã and ã† which create and annihilate eigenstates of a
general one-dimensional oscillator do not in general obey this canonical commutation relation
except in the special case of l � 2. Instead, [ã, ã†] = λ(H). Indeed, it is precisely for this
reason that ã and a cannot be related to one another by a unitary transformation.

If we now consider Hamiltonians of the form of equation (1) in which V (a,a†) is
controlled by a single coupling constant ε, we can label the Hilbert space for each ε as Hε .
Then Hε is unitarily inequivalent to HSHO . Moreover, there cannot be a unitary transformation
which maps Hε → Hε′ when ε = ε′. If there were, then using a succession of these
transformations we can construct a unitary transformation mapping Hε to HSHO and the two
Hilbert spaces would be unitarily equivalent. Thus for different values of ε the Hilbert spaces
Hε are inequivalent to one another. This is a concrete example of Haag’s theorem (see [15]),
first proved for quantum field theories using Lorentz invariance.

Because the spectrum of ã†ã no longer consists of the non-negative integers, but instead
depends on the energy of the state, ã†ã cannot in general be interpreted as the corresponding
number operator for nonlinear oscillators. However, like the SHO, states that span Hnl are
enumerated by an integer n. Thus, we can construct for the nonlinear oscillator an operator
N(H) for whichN(H)|n〉nl = n|n〉nl . In analogy to the SHO we shall callN(H) the number
operator for the nonlinear oscillator.

We construct this operator by first noting that H does not change the occupation number
n of the states |n〉nl . Consequently, the states |n〉nl are simultaneously eigenvectors for both
H and the constructed number operator. Necessarily, the two operators must commute. Since
H is the only conserved quantity in the system, the number operator N(H) can be a function
of H only. From (15), it is straightforward to see that for N(H)|n〉nl = n|n〉nl , N(H) must
satisfy the commutation relation

[ã, N(H)] = ã. (18)

We also require the subsidiary conditionN(H)|�〉nl = 0. ExpandingN(H) in a power series
and once again using equation (8), the solution to the operator equation (18) reduces to finding
the solution of the functional equation

N(λ(e) + e)−N(e) = 1 (19)

for a given λ with the ‘boundary condition’ N(eg) = 0 (see appendix B). e is a real number
in (19) and N(H) is obtained by replacing e → H . (Or, equivalently, (19) is the resultant
equation after applying the corresponding operator equation to an eigenstate of H with
energy e.) Most physically relevant solutions of equation (19) are monotonically increasing.

Like the differential equation it resembles, the general solution of (19) consists of the
linear combinationNp(e)+Nh(e) whereNp(e) is the ‘particular’ solution to (19) whileNh(e)
is the solution to the ‘homogeneous’ equation

Nh(λ(e) + e)−Nh(e) = 0. (20)

Whether or not such a solution exists depends on the particular form of λ(e), although the
above equations can be solved for general λ in the semiclassical limit as we shall see in
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section 5. Unlike a differential equation, however, the single boundary condition N(eg) = 0
is not sufficient to determine N(H) uniquely in general. Consider the case of the SHO. Then
λ = 1 and the particular solution of (19) gives Np(H) = H − I/2. It is, in fact, the usual
number operator. However, the solution of the homogeneous equation (20) is any periodic
function with period 1 which vanishes at e = 1

2 . There are an infinite number of such functions,
such as

N(H) = H − I/2 + C sin(π(H − I/2)) (21)

for any real C.
From equations (5) and (6) the study of nonlinear oscillators reduces to the determination

of the ground state energy eg and λ. This is non-trivial and a method for doing so will be given
in the section 4. For now we shall limit ourselves to a qualitative description of the energy
levels by looking at different possible behaviours of λ(e).

For a ground state to exist, λ(e) > 0 and we shall restrict our considerations to such λ.
Representing the eigenvalues of H generically by e, if λ(e) is a monotonically increasing
function which is unbounded from above, then the energy spacings between successive energy
levels becomes wider as n increases and en grows rapidly with n. If, on the other hand,
λ(e) → constant as e → ∞, then eventually the energy levels become equally spaced and we
would once again obtain SHO type of energy levels. Note also, that if we consider (17) as a
nonlinear transformation of en generated by λ(e), then the fixed point of this transformation
λ(λ(e) + e) = λ(e) occurs precisely when λ(e) goes to a constant (see appendix B). Finally,
if λ(e) is a monotonically decreasing function of e which decreases sufficiently rapidly, there
will be an upper bound to the energy levels emax.

Let us now consider time evolution. If H does not explicitly depend on t , time evolution
is generated by a unitary transformation†,

ã(t) = eitHh̄ã(0)e−itHh̄ (22)

which preserves the commutation relation (6). Using (4), the solution to the Heisenberg
equation of motion is

ã(t) = e−iλ(H)t/h̄ã(0). (23)

The frequency of oscillation of ã(t), λ(H)/h̄, now depends on the Hamiltonian H . This
agrees with the recent result of Bender and Bettencourt [13].

The approach taken by Bender and Bettencourt is a generalization of multiple-scale
perturbation theory (MSPT) to the solution of quantum evolution equations. It is known that
conventional perturbation theory applied to the solution of (classical) differential equations
often contain secular terms which grow unphysically with time or length. This is an indication
that a characteristic physical behaviour differs at different length scales. MSPT explicitly
recognizes this fact and takes it into account. Bender and Bettencourt extended MSPT to the
solution of the quantum anharmonic oscillator to first order in the coupling constant and showed
that the characteristic frequency of oscillation depends explicitly on the energy of the state. It is
interesting to note that the solution to their operator equations automatically diagonalizes their
Hamiltonian in the same way we seek solutions to (4) which satisfy (5). However, while their
result only holds perturbatively to first order, our result is exact and was obtained algebraically
through a completely different approach. The dependence of the frequency of oscillation on
the energy of the state was interpreted by them as an operator form of mass renormalization.
An’s dependence in (16) on the energy of the state would then be interpreted as wavefunction
renormalization.

† The case where V depends on time explicitly, as through the coupling constant ε, is much more subtle. Neither (22)
nor (23) are valid since in general [H(t),H(t ′)] = 0 for t = t ′.
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3. KMS states

In this section we demonstrate the utility of the general results obtained in the above by putting
the nonlinear oscillator in contact with a thermal reservoir at a temperature T and consider the
average energy and number operator of the system. We shall denote these thermal averages
by 〈· · ·〉T which we shall take to be a KMS state [27–30]. Namely, if A(t) and B(t) are two
operators in the Heisenberg representation, then

〈A(t)B(t)〉T = 〈B(t)A(t + ih̄β)〉T (24)

where 1/β = kBT . Since thermal equilibrium states are stationary, we can, without a loss of
generality, take t = 0 in (24).

Applying this condition to equation (6),

〈λ(H)〉T = 〈ã(0)ã†(0)〉T − 〈ã(0)ã†(ih̄β)〉T . (25)

Then using the solution, equation (23), of the Heisenberg equation of motion, equation (4) and
the commutation relation (6),

〈λ(H)e−βλ(H)〉T = 〈(H − eg)(1 − e−βλ(H))〉T (26)

which reduces to the usual Bose–Einstein distribution for the SHO when λ = 1.
Unlike the case of the SHO, it is not possible to determine 〈H〉T any further using solely

the KMS condition. We must make use of a partition function and shall restrict ourselves to
states which can be represented by a trace over a density matrix,

〈H〉T = 1

Z
TrHnl

He−βH (27)

where Z ≡ TrHnl
e−βH is the usual partition function. Then using the identity

〈[H + λ(H)]e−βλ(H)〉T = 〈e−βλ(H)〉T 〈H〉T − ∂

∂β
〈e−βλ(H)〉T (28)

we obtain

〈H 〉T = eg −
∂
∂β

〈e−βλ(H)〉T
1 − 〈e−βλ(H)〉T (29)

and we see once again the importance of λ(H). Indeed, from (27) we find that

Z = e−βeg

1 − 〈e−βλ(H)〉T . (30)

As for the number operator, from equation (19),

〈e−βλ(H)〉T = 〈N(H + λ(H))e−βλ(H)〉T − 〈N(H)e−βλ(H)〉T . (31)

Then, using

〈N(H + λ(H))e−βλ(H)〉T = 1

Z
TrHnl

N(H + λ(H))e−βH−βλ(H) (32)

and (17), we find that 〈N(H + λ(H))e−βλ(H)〉T = 〈N(H)〉T so that

〈e−βλ(H)〉T = 〈N(H)(1 − e−βλ(H))〉T . (33)

This once again agrees with the SHO result for λ = 1.
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4. Solution of the eigenvalue problem

In the previous section we have analysed the general structure of the Hilbert spaces of nonlinear
oscillators and their properties when placed in contact with a heat bath. Our approach depends
on the solution of the eigenvalue problem equations (4) and (5). In this section we shall present
a method of constructing these solutions λ(H), ã and ã†. Since H is given in terms of a and
a†, in general ã = ã(a,a†), which is understood in terms of a power series,

ã =
∞∑
r,s=0

brs(a
†)ras . (34)

By using the commutation relation [a,a†] = I we can always reduce any expansion of ã to
this form. Equation (34) is well defined only if the corresponding function

f (z, z̄) =
∞∑
r,s=0

brs z̄
rzs (35)

is convergent on the complex plane C.
At this point we should also express λ(H) as a power series in H , insert this series and

as well as (34) in equation (4) and obtain an infinite set of coupled equations between various
brs and the coefficients of the λ expansion. The problem would quickly become intractable,
however. We shall therefore first make the following drastic simplification. Instead of (4) we
shall solve the simpler equation

: [ã,H] :=: λ(sc)(H)ã : (36)

where : : denotes normal ordering. Since the solution of (36) will differ from that of (4), we
denote the left eigenvalue of (36) by λ(sc). Indeed, as we shall see, once this is done we are in
the semiclassical limit. Correspondingly, we shall take the normalization condition as

: H :=: ã†ã : + 1
2I. (37)

The solution of this equation is then used as a guide to reconstructing the solution to (4). Notice
that corrections to the ground state energy cannot be determined under this simplification. It
can only be determined when the full operators are reconstructed from the solution to (36).

Denoting the solution to (36) by the superscript sc, we find that for

ã(sc) =
∞∑
r,s=0

b(sc)rs (a
†)ras (38)

we have

:
∞∑
r,s=0

b(sc)rs λ(H)(a†)ras :=
∞∑
r,s=0

b(sc)rs {(s − r)(a†)ras + s : (a†)ras−1[a, V (a,a†)] :

+r : (a†)r−1[a†, V (a,a†)]as :}. (39)

Under this normal ordering, solving (39) is equivalent to solving the differential equation

λ(sc)(e(sc))f (sc)(z, z̄) = {f (sc), e(sc)}PB ≡ ∂f (sc)

∂z

∂e(sc)

∂z̄
− ∂f (sc)

∂z̄

∂e(sc)

∂z
(40)

where ã(sc) = f (sc)(a,a†). e(sc) is obtained from H by replacing everywhere a → z and
a† → z̄ and the normalization condition (37) is now e(sc) = |f (sc)|2 + 1

2 . The right-hand side
of (40) is just the classical Poisson bracket but with the generalized coordinates

z =
(
m

2h̄2

)1/2

x + i

(
1

2m

)1/2

p z̄ =
(
m

2h̄2

)1/2

x − i

(
1

2m

)1/2

p (41)
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wherem is the mass of the particle. We are therefore looking for a semiclassical solution to (5).
Indeed, we shall see explicitly in section 5 that the solution of (40) is equivalent to the WKB
approximation.

Importantly, (40) has the same symmetry properties as (4). Namely, if f (sc)(z, z̄) is a
solution to (40), then so is f (sc)(z, z̄)g(e(sc)) where g(e(sc)) is any function of e(sc) (although
they do not satisfy the normalization condition equation (37)). Making use of this symmetry,
we change coordinates from |z| and θ = −i log(z/z̄)/2 to e(sc) and θ so that

∂f

∂z
= ∂f

∂e

∂e

∂z
+
∂f

∂θ

∂θ

∂z

∂f

∂z̄
= ∂f

∂e

∂e

∂z̄
+
∂f

∂θ

∂θ

∂z̄
. (42)

Terms containing derivatives of e vanish and (40) reduces to

iλ(sc)(e(sc))f (sc)(e(sc), θ) = ∂e(sc)

∂|z|2
∂f (sc)

∂θ
(43)

whose solution is

f (sc)(e(sc), θ) =
√
e(sc) − 1

2
exp

{
iλ(sc)

∫ θ

0

(
∂e(sc)

∂|z|2
)−1

dφ

}
(44)

and satisfies the normalization condition explicitly. Determination of ã(sc) is then reduced to
performing the above integral, which requires inverting the equation e(sc) = e(sc)(|z|, θ) and
solving for |z| in terms of e(sc) and θ . Next, for f (sc) to be analytic on C, f (sc)(e(sc), 0) =
f (sc)(e(sc), 2π), giving

1

λ(sc)(e(sc))
= 1

2π

∫ 2π

0

(
∂e(sc)

∂|z|2
)−1

dφ (45)

which determines λ(sc). Notice that in contrast to phase angle techniques which require the
construction of a phase operator (see, for example, [22]) and its concomitant difficulties, our
analysis uses the phase only in the semiclassical limit where it is well defined.

Reconstruction of ã and λ(H) from f (sc)(z, z̄) is now straightforward, although tedious.
ã(sc) can be obtained by first expanding f (sc) in (44) in a power series in z and z̄, then taking
ã(sc) = f (sc)(a,a†). Since ã(sc) was obtained via normal ordering, there is an ordering
ambiguity when we reconstruct ã from it. Fundamentally, this arises when we replace z → a,
z̄ → a† in f (sc)(a,a†) since the term z̄z in the expansion can be replaced by either a†a or
aa† = I + a†a. Therefore, to determine ã we shall take �a = {f (sc)(a,a†)}order, but we now
replace z̄z → a†a + AI where the A’s are constants. These are determined by requiring that
the resulting expansions for ã and λ(H) satisfy both (4) and (5) (or equivalently (6)) term by
term in the expansion. This uniquely determines not only ã and λ(H), but eg as well.

From (45) we see that for λ(H) to be independent of H , ∂e(sc)/∂|z|2 = k, where k is
a function of θ only. This limits l � 2. Correspondingly, if l > 2, λ(H) is necessarily a
function of H .

5. The WKB approximation

We now make the connection between the solution of (40) and the semiclassical limit. From
the correspondence principle, in the large-n limit en goes over to the classical result in which
the spacings between energy levels en − en−1 are small in comparison to en−1 and the levels
are essentially continuous. In this limit, we can approximate

en − en−1 ≈ de

dn
(46)
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where e(n) is considered as a continuous function of n. Then from (17)
de

dn
≈ λ(sc)(e) (47)

where we have replaced λ → λ(sc) in this limit. Integrating and using equations (41) and (45),

n + n∞ ≈ 1

2π

∫ e

0

∫ 2π

0

(
∂e(sc)

∂|z|2
)−1

de(sc) dθ (48)

where n∞ is an integration constant which can be neglected in the limit n → ∞. Changing
variables back to z and z̄ in the integrand of (48) and using (41), we find that

n + n∞ ≈ 1

2πh̄

∫ ∫
De

dx dp. (49)

The integration is now over a disc De centred about the origin in the classical phase space.
This is just the semiclassical Bohr–Sommerfeld quantization rule obtained from the WKB
approximation.

We next consider the solution of the functional equation (19) in the large-n limit. Sinceλ(e)
measures the energy splitting between energy levels, in this limit λ(e) � e (see appendix A)
and (16) can be approximated by the differential equation

λ(sc)(e)
dN

de
≈ 1 (50)

where once again we have replaced λ → λ(sc). The solution to this equation is trivial and we
once again obtain the WKB result,

N(e) + n∞ ≈ 1

2πh̄

∫ ∫
De

dx dp (51)

in the semiclassical limit. However, the operatorN(H) can now be obtained directly from (51)
by expanding the integral in powers of e and replacing e → H .

Finally, we consider the quantum partition function

Z ≡ TrHnl
e−βH =

∞∑
n=0

e−βen (52)

in the large-temperature limit. Making use of the Euler–Maclaurin formula,

Z ≈
∫ ∞

0
e−βe dn + 1

2 e−βeg + H.O.T. (53)

In the large-temperature limit kBT � eg we can neglect the terms ∼e−βeg . Moreover, at this
energy scale, en � λ(en). Using (47), we convert the integral over n to one over e. Making
use once again of (41), we find that

Z ≈ 1

2πh̄

∫ ∫
e−βe dx dp (54)

where the integral is over the classical phase space. This is precisely the classical result with
the requisite factor of the fundamental phase space volume 2πh̄.

6. The x4 interaction

In this section we shall apply the above analysis to a non-trivial system, the x4 anharmonic
oscillator. As an example of the above techniques, we shall explicitly construct λ, ã and ã†.
The Hamiltonian for the oscillator is

H = a†a + 1
2I +

ε

4
(a + a†)4 (55)
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with the corresponding

e(sc) = 1
2 + |z|2 + 4ε|z|4 cos4 θ. (56)

Then

f (sc)(e(sc), θ) =
√
e(sc) − 1

2
exp

{
π i

2

I (θ)

I (π/2)

}
(57)

where

I (θ) =
∫ θ

0

dφ√
1 + ξ cos4 φ

(58)

and ξ = 16(e(sc) − 1
2 )ε. When ε > 0, this integral can be reduced to

I (θ) = 1

2(1 + ξ)1/4
F(α(θ)|q) (59)

where F(α(θ)|q) is the elliptical integral of the first kind and

α(θ) = arccos

(√
1 + ξ − tan2 θ√
1 + ξ + tan2 θ

)
(60)

while

q =
√

1 + ξ − 1

2
√

1 + ξ
(61)

is its modulus. The analyticity of f (sc)(e(sc), θ) gives

λ(sc)(e(sc)) = π

2

(1 + ξ)1/4

K(
√
q)

(62)

where K(
√
q) is the quarter-period of F(α(θ)|q).

Next, to determine ã, we expand (57) to fifth order in |z|,
f (sc)(z, z̄) = z + 1

4ε{−3(z2 − z̄2)z + (z + z̄)3}
+ 1

2ε
2{ 3

2z
5 + 39

4 z̄z
4 − 25

8 z̄
2z3 − 12z̄3z2 − 3

8 z̄
4z + 1

4 z̄
5}. (63)

Notice that this is an expansion in |z|, whose convergence is guaranteed by the analyticity of
f (sc), and not in the coupling constant ε. We then replace z → a and z̄ → a† in the above
and take

ã = a + 1
4εF + 1

2ε
2G (64)

where

F = −3(a2 − (a†)2)a + (a + a†)3 + f1a + f2a
†

G = 3
2a5 + 39

4 a†a4 − 25
8 (a

†)2a3 − 12(a†)3a2 − 3
8 (a

†)4a + 1
4 (a

†)5

+g1a
3 + g2a

†a2 + g3(a
†)2a + g4(a

†)3 + g5a + g6a
†.

(65)

The constants f1, f2, g1, . . . , g6 are present due to the ordering ambiguity. Requiring that (64)
satisfies (4) gives f1 = f2 = 3, while

g1 + g3 = −15 g2 = − 135
8 g4 = − 3

8 g5 = − 153
8 g6 = − 27

2 . (66)

The ground state energy of the oscillator is also determined to this order,

eg = 1
2 + 3

4ε − 21
8 ε

2. (67)

Now using the commutation relation (6), we obtain

λ(H) = I + 3ε(H + 1
2I)− ε2{ 69

4 (H + 1
2I)2 − 9

2 (H + 1
2I) + 15

2 I} (68)
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while

3g1 + g3 = 45
2 (69)

giving g1 = 75
4 and g3 = − 135

4 . This last relationship was obtained by requiring that λ be a
function of H only. To this order then,

ã = a + 1
4ε{−3(a2 − (a†)2)a + (a + a†)3 + 3(a + a†)}

+ 1
2ε

2{ 3
2a5 + 39

4 a†a4 − 25
8 (a

†)2a3 − 12(a†)3a2 − 3
8 (a

†)4a + 1
4 (a

†)5

+ 75
4 a3 − 135

8 a†a2 − 135
4 (a

†)2a − 3
8 (a

†)3 − 153
8 a − 27

2 a†}. (70)

The energy levels can now be straightforwardly calculated from (17),

en = en−1 + λ(en−1)

= eg +
n−1∑
r=0

λ(er). (71)

Using (68), and keeping terms to order ε2 only, we obtain after rearrangement,

en ≈ eg + n + 3ε
n−1∑
r=0

(r + 1)− ε2

(
51

4

n−1∑
r=0

r2 +
51

2

n−1∑
r=0

r + 18n +
21

8

)
. (72)

Then

en ≈ n + 1
2 + 3

4ε(2n
2 + 2n + 1)− ε2( 17

4 n
3 + 51

8 n
2 + 59

8 n + 21
8 ) (73)

which is the standard second-order perturbation result. Notice also that if we keep terms only
up to ε, then en − en−1 ≡ λ(en) ≈ 1 + 3nε. This is precisely the result obtained by Bender
and Bettencourt [13].

It is instructive to compare (68) with the expansion of (62),

λ(sc)(e) = 1 + 3ε(e(sc) − 1
2 )− 69

4 ε
2(e(sc) − 1

2 )
2. (74)

Notice that in both expansions the coefficients of the highest power of the energy in each term
are the same. This is a generic feature. Quantum mechanical corrections to λ(sc) only results
in the appearance of lower powers of H in each term of the expansion. Moreover, if we then
use λ(sc) to calculate en, we find

e(sc)n = n + 1
2 + 3

2ε(n
2 − n)− ε2( 17

4 n
3 − 33

8 n
2 − 1

8n) (75)

which also agrees with (71) in the large-n limit. This also is a generic feature of the expansion
since the coefficient of the highest power of n in each term of the expansion is obtained from
λ(sc) only.

The above result is valid only for small n. In the large-n limit, the semiclassical result is
valid and

λ(en) ≈ λ(sc)(en) ≈ π

K(1/
√

2)
(eε)1/4. (76)

To compare with the WKB result, from [7] we know that

eWKBn ≈ 34/3π2

[6( 1
4 )]

8/3
ε1/3n4/3. (77)

This gives the energy splitting between levels as

eWKBn+1 − eWKBn ≈ 4

3

eWKB

n
≈ 4π3/2

[6( 1
4 )]

2
(eWKBn ε)1/4. (78)

Since K(1/
√

2) = [6( 1
4 )]

2/4/
√
π , this is precisely the form of λ(en) for large n and we see

explicitly the equivalence between λ(sc) and the WKB approximation.
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7. Discussion

We have shown that the study of nonlinear oscillators is equivalent to the study of algebras
satisfying equations (5) and (6), the SHO being a special case of this algebra. The Hilbert
space (15) and eigenvalues (17) of these algebras all have the same form. The number operator
for nonlinear oscillators was also constructed. Results of this general analysis were used to
determine the general form of the partition function and average energy for an nonlinear
oscillator in contact with a heat bath. Analysis of nonlinear oscillators therefore reduces to
determining the function λ(H) and the ground state eg of the oscillator. This can be done
by first making a semiclassical approximation, which requires only the evaluation of a single
integral, and then using it as a guide to constructing ã and ã† in terms of a and a†.

Unlike the Bogoluibov transformation, the mapping between (ã, ã†) and (a,a†) is
nonlinear and cannot be generated by a simple unitary transformation. The two Hilbert spaces
Hε and HSHO are unitarily inequivalent. Indeed, each value of ε determines a separate Hilbert
space, all of whom are inequivalent to one another. This result provides a concrete example
of Haag’s theorem first proved for quantum field theories in higher dimensions. Based on the
results of this theorem and the generality of our analysis, we expect a similar construction to
hold for the φ4 theory in higher dimensions. Note, however, that this construction requires a
natural energy scale to define λ(H). For Hamiltonians of the form of equation (1) the SHO
energy scale plays that role. For quantum field theories, however, no such natural energy scale
exists. It would have to be introduced, requiring an introduction of a high (or low) energy
cutoff for the theory.

Once the general solution to (4) is known, the general structure of the Hilbert space and
the eigenvalues of nonlinear oscillators is determined. The establishment of the existence
of such solutions for general H is quite difficult. However, we have shown the utility of this
approach by applying it to the general analysis of the quantum statistical mechanical properties
of nonlinear oscillators in contact with a heat bath, and we have shown that they reduce to the
standard result for the case of the SHO. We have also presented a specific method of solving
these equations and have shown that in the semiclassical limit it reduces to the WKB result
for general H . Consequently, λ, ã and ã† exist in this limit. Indeed, the partition function
for nonlinear oscillators reduces to the usual integral over the classical phase space in this
limit. In the full quantum mechanical case, we have shown that in the special case of the x4

oscillator, not only does our method of constructing solutions of (4) agree explicitly with the
WKB result, it also agrees with the results obtained via standard perturbation theory to the
second order. Just as importantly, it agrees with the results of Bender and Bettencourt obtained
using quantum MSPT, a completely independent method.

The method of finding solutions to the nonlinear oscillator problem given in sections 2
and 4 does not make explicit use of the states of any specific Hilbert space. This was deliberate
and needed in light of the fact that Hnl and HSHO are unitarily inequivalent. Rather, we
solve this problem by explicitly constructing the operators which generate the eigenstates of
the nonlinear oscillator from a and a†. This is in contrast to the usual perturbation theory
approach in which one begins with HSHO from the very beginning and construct the energy
eigenstates of the nonlinear oscillator from those of the SHO. While the approach taken in
sections 4 and 6 would seem to be more tedious than the usual perturbation theory, it is known
that the perturbative result for the case of the anharmonic oscillator does not converge in the
traditional sense and needs to be Borel summed to obtain a finite result. It is important to
note that the expansion of ã in (34) does not rely on an expansion in the coupling constant
ε as perturbation theory does. Rather it is an expansion in a and a†, as can be explicitly
seen in equations (63) and (70) for the anharmonic oscillator. In the semiclassical limit the
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convergence of this series can be determined by studying the analytical properties of (44).
Indeed, convergence of (34) is guaranteed for the anharmonic oscillator in this limit since for
this case f (sc) is simply related to the elliptical functions whose analytic properties are well
known. While analyticity in the semiclassical limit does not guarantee the convergence of (34),
failure of convergence in this limit virtually assures that (34) will not converge. Nevertheless,
it is still an open question as to the classes of potentials for which (34) converges.

Appendix A

The existence of a ground state is only guaranteed when λ is positive definite. In the
semiclassical limit it can be shown that this holds for wide classes of bounding potentials.
For the polynomial interaction potential V (a,a†) = ε(a + a†)l/ l,

λ(sc) ∼ e1/2−1/lε1/l . (79)

For the exponential interaction potential V (a,a†) = εeα
2(a+a†)2 ,

λ(sc) ∼ α

√
e

log (e/ε)
. (80)

In both cases λ(sc) is positive definite. Notice also that λ(sc)/e(sc) → 0 as e(sc) → ∞, justifying
the approximations made in section 5.

Appendix B

The form of (8), as well as the functional equation (19), suggest that we look at a finite-
difference form of the one-dimensional Lie derivative. Given any function λ(x), we define the
finite-difference Lie operator Lλ by

Lλf (x) ≡ f (λ(x) + x)− f (x) (81)

where f (x) is any function of x. In the limit λ(x) → 0 for all x, it is straightforward to see
that (81) reduces to the usual Lie derivative. Moreover, for any two functions f (x) and g(x)
and constants a, b,

Lλ(af (x) + bg(x)) = aLλf (x) + bLλg(x). (82)

Lλ is therefore a linear operator on the space of functions on R. It is not, however, a derivation
since it does not satisfy the product rule,

Lλ{f (x)g(x)} = f (x)Lλg(x) + g(x)Lλf (x) + Lλf (x)Lλg(x). (83)

Finally, for any two given functions λ(x) and ξ(x), the commutator of two finite-difference
Lie operators

[Lλ,Lξ ]f (x) = f (x + λ(x) + ξ(x + λ(x)))− f (x + ξ(x) + λ(x + ξ(x))) (84)

vanishes if and only if Lλξ(x) = Lξ λ(x).
Using Lλ, the particular solution of (19) becomes the solution of the operator equation,

LλNp = 1. Of more interest is the homogeneous solution to (19), LλNh = 0, which lies in
the kernel of Lλ, ker Lλ, for a given λ. Notice that when λ is a real constant, ker Lλ is the
space of all periodic functions with period 1/λ. When λ is a function of x, ker Lλ contains
generalizations of periodic functions to those whose frequencies are x-dependent. This agrees
quite well with the observation that in the semiclassical limit, 1/λ(sc) reproduces the WKB
result. Of particular interest is when λ ∈ ker Lλ: Lλλ = 0. From (17) we see that for this λ the
energy levels are equally spaced and are determined solely by λ(eg). The constant function,
and thus the SHO, clearly satisfies this condition. Whether there are other non-trivial solutions
to this equation for physically realizable nonlinear oscillators is still an open question.
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